Combinatorics under Determinacy

Jared Holshouser
University of North Texas
Ohio University 2016

Overview

- Combinatorics
- The Axiom of Determinacy
- Definable Combinatorics

The Simplest Combinatorics: Intuitively

- The Pigeonhole Principle: "if you have more people than you have beverage types, then at least two people have to have the same beverage."

The Simplest Combinatorics: Intuitively

- The Pigeonhole Principle: "if you have more people than you have beverage types, then at least two people have to have the same beverage."
- Ramsey's theorem: "if you have a lot more people than you have beverage types, then there is a large group of people so that every pair pulled from this group has the same combination of beverages"

The Simplest Combinatorics: Formally

- The Pigeonhole Principle: If $m<n \in \mathbb{N}, X$ is a set of size n, and $f: X \rightarrow m$ is a partition of X into m-pieces, then for some $i<m, f^{-1}(i)$ is bigger than 1. (Dirichlet 1834, "Schubfachprinzip")

The Simplest Combinatorics: Formally

- The Pigeonhole Principle: If $m<n \in \mathbb{N}, X$ is a set of size n, and $f: X \rightarrow m$ is a partition of X into m-pieces, then for some $i<m, f^{-1}(i)$ is bigger than 1. (Dirichlet 1834, "Schubfachprinzip")
- Ramsey's theorem: Fix $n, m, k, l \in \mathbb{N}$. Then there is an $N \in \mathbb{N}$ so that whenever X is a set of size n, and $f:[X]^{k} \rightarrow m$ is a partition of the increasing k-tuples of X into m-pieces, then there is an $A \subseteq X$ so that A has size I and f is constant on $[A]^{k}$. (Ramsey 1930, [18])

The Coloring Picture

Frequently, partition functions that show up in applications of the Pigeonhole are referred to as colorings.

The Coloring Picture

Frequently, partition functions that show up in applications of the Pigeonhole are referred to as colorings.

Pigeonhole

Colors
$\bullet \bullet$

Ramsey

Two Generalizations

There are two ways one might try to generalize these properties.

- Direction 1: add structure to the set being colored and demand that the coloring respects this structure. For example, look at finite graphs and demand that adjacent nodes receive different colors.
- Direction 2: Allow the parameters in the coloring set up to be infinite.

Calibrating Infinite Sizes

To state coloring theorems explicitly we will need to understand the sizes of sets at a finer level than finite, countable, and uncountable. The cardinals are an attempt to list out all possible sizes of all sets. They have some very nice properties:

Calibrating Infinite Sizes

To state coloring theorems explicitly we will need to understand the sizes of sets at a finer level than finite, countable, and uncountable. The cardinals are an attempt to list out all possible sizes of all sets. They have some very nice properties:

1. Any two cardinals κ and λ are comparable with injections: either κ embeds into $\lambda(\kappa \leq \lambda)$ or vice versa.

Calibrating Infinite Sizes

To state coloring theorems explicitly we will need to understand the sizes of sets at a finer level than finite, countable, and uncountable. The cardinals are an attempt to list out all possible sizes of all sets. They have some very nice properties:

1. Any two cardinals κ and λ are comparable with injections: either κ embeds into $\lambda(\kappa \leq \lambda)$ or vice versa.
2. Like \mathbb{N}, cardinals are well-ordered. Recursive constructions and inductive proofs can be carried out on cardinals.

Calibrating Infinite Sizes

To state coloring theorems explicitly we will need to understand the sizes of sets at a finer level than finite, countable, and uncountable. The cardinals are an attempt to list out all possible sizes of all sets. They have some very nice properties:

1. Any two cardinals κ and λ are comparable with injections: either κ embeds into $\lambda(\kappa \leq \lambda)$ or vice versa.
2. Like \mathbb{N}, cardinals are well-ordered. Recursive constructions and inductive proofs can be carried out on cardinals.
3. All the finite numbers are represented as cardinals; they form an initial segment of the cardinals.

Calibrating Infinite Sizes

To state coloring theorems explicitly we will need to understand the sizes of sets at a finer level than finite, countable, and uncountable.
The cardinals are an attempt to list out all possible sizes of all sets. They have some very nice properties:

1. Any two cardinals κ and λ are comparable with injections: either κ embeds into $\lambda(\kappa \leq \lambda)$ or vice versa.
2. Like \mathbb{N}, cardinals are well-ordered. Recursive constructions and inductive proofs can be carried out on cardinals.
3. All the finite numbers are represented as cardinals; they form an initial segment of the cardinals.
4. \aleph_{0} is the first infinite cardinal, it is essentially \mathbb{N}. The first uncountable cardinal is \aleph_{1}.

Calibrating Infinite Sizes

To state coloring theorems explicitly we will need to understand the sizes of sets at a finer level than finite, countable, and uncountable.
The cardinals are an attempt to list out all possible sizes of all sets. They have some very nice properties:

1. Any two cardinals κ and λ are comparable with injections: either κ embeds into $\lambda(\kappa \leq \lambda)$ or vice versa.
2. Like \mathbb{N}, cardinals are well-ordered. Recursive constructions and inductive proofs can be carried out on cardinals.
3. All the finite numbers are represented as cardinals; they form an initial segment of the cardinals.
4. \aleph_{0} is the first infinite cardinal, it is essentially \mathbb{N}. The first uncountable cardinal is \aleph_{1}.
5. If a set X can be well-ordered, then it is in bijection with a unique cardinal κ. We say X has size κ. AC implies every set is in bijection with a unique cardinal.

Calibrating Infinite Sizes

Unlike finite numbers, infinite cardinals can be well-ordered in a variety of ways. These are naturally ordered by order-preserving embeddings and constitute the ordinal numbers. The cardinals and ordinals together form the set theorists number line.

Calibrating Infinite Sizes

Unlike finite numbers, infinite cardinals can be well-ordered in a variety of ways. These are naturally ordered by order-preserving embeddings and constitute the ordinal numbers. The cardinals and ordinals together form the set theorists number line.

ω is the minimum well-order on \aleph_{0}. It is also essentially \mathbb{N}. There are \aleph_{1}-many well-orders on $\aleph_{0} . \omega_{1}$ is the minimum well-order \aleph_{1}, and there are \aleph_{2}-many well-orders on \aleph_{1}. This pattern continues.

Infinite Combinatorics

For all cardinals we obtain a version of the pigeonhole principle. Suppose κ and λ are cardinals and $\lambda<\kappa$. Suppose X has size κ and $f: X \rightarrow \lambda$ is a coloring of X with λ-many colors. Then there is an $\alpha \in \lambda$ so that $f^{-1}(\alpha)$ is bigger than 1 .

Infinite Combinatorics

For all cardinals we obtain a version of the pigeonhole principle. Suppose κ and λ are cardinals and $\lambda<\kappa$. Suppose X has size κ and $f: X \rightarrow \lambda$ is a coloring of X with λ-many colors. Then there is an $\alpha \in \lambda$ so that $f^{-1}(\alpha)$ is bigger than 1.

The infinite Ramsey theorem is an extension of Ramsey's theorem to all of \mathbb{N}. If $m, k<\aleph_{0}$ and $f:\left[\aleph_{0}\right]^{k} \rightarrow m$, then there is an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{k}$.

Harder Infinite Combinatorics

For infinite cardinals κ, let $[\kappa]^{<\omega}$ be the collection of all increasing finite tuples from κ. Can we get a simultaneous version of Ramsey's theorem for \aleph_{0} : i.e. if $f:\left[\aleph_{0}\right]^{<\omega} \rightarrow 2$, is there an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{<\omega}$?

Harder Infinite Combinatorics

For infinite cardinals κ, let $[\kappa]^{<\omega}$ be the collection of all increasing finite tuples from κ. Can we get a simultaneous version of Ramsey's theorem for \aleph_{0} : i.e. if $f:\left[\aleph_{0}\right]^{<\omega} \rightarrow 2$, is there an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{<\omega}$?

No! Consider $f(\vec{s})=$ parity of $\operatorname{lh}(\vec{s})$. Let's weaken the question. If $f:\left[\aleph_{0}\right]^{<\omega} \rightarrow 2$, is there an infinite $A \subseteq \aleph_{0}$ so that for each k, f is constant on $[A]^{k}$?

Harder Infinite Combinatorics

For infinite cardinals κ, let $[\kappa]^{<\omega}$ be the collection of all increasing finite tuples from κ. Can we get a simultaneous version of Ramsey's theorem for \aleph_{0} : i.e. if $f:\left[\aleph_{0}\right]^{<\omega} \rightarrow 2$, is there an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{<\omega}$?

No! Consider $f(\vec{s})=$ parity of $\operatorname{lh}(\vec{s})$. Let's weaken the question. If $f:\left[\aleph_{0}\right]^{<\omega} \rightarrow 2$, is there an infinite $A \subseteq \aleph_{0}$ so that for each k, f is constant on $[A]^{k}$?

No! Consider $f(\vec{s})=1$ iff $\min (s)<\operatorname{lh}(\vec{s})$. Let's weaken the question again. Is there a cardinal κ so that whenever $f:[\kappa]^{<\omega} \rightarrow 2$, there is an $A \subseteq \kappa$ with size κ so that for each k, f is constant on $[A]^{k}$?

Finite Coloring Properties

Yes, but such a cardinal is not easy to find. In fact, such a cardinal is not describable with the techniques of classical mathematics. This extended Ramsey property is just one possible finite coloring property.

Finite Coloring Properties

Yes, but such a cardinal is not easy to find. In fact, such a cardinal is not describable with the techniques of classical mathematics. This extended Ramsey property is just one possible finite coloring property. Let κ be a cardinal.

- κ is Ramsey if whenever $f:[\kappa]^{<\omega} \rightarrow 2$, there is an $A \subseteq \kappa$ with size κ so that for each k, f is constant on $[A]^{k}$ (Erd os-Hajnal 1962, [18]).

Finite Coloring Properties

Yes, but such a cardinal is not easy to find. In fact, such a cardinal is not describable with the techniques of classical mathematics. This extended Ramsey property is just one possible finite coloring property. Let κ be a cardinal.

- κ is Ramsey if whenever $f:[\kappa]^{<\omega} \rightarrow 2$, there is an $A \subseteq \kappa$ with size κ so that for each k, f is constant on $[A]^{k}$ (Erd os-Hajnal 1962, [18]).
- κ is Rowbottom if whenever $\lambda<\kappa$ and $f:[\kappa]^{<\omega} \rightarrow \lambda$, there is an $A \subseteq \kappa$ with size κ so that when f is restricted to $[A]^{<\omega}$, it's range is countable (Rowbottom 1964, [19]).

Finite Coloring Properties

Yes, but such a cardinal is not easy to find. In fact, such a cardinal is not describable with the techniques of classical mathematics.
This extended Ramsey property is just one possible finite coloring property. Let κ be a cardinal.

- κ is Ramsey if whenever $f:[\kappa]^{<\omega} \rightarrow 2$, there is an $A \subseteq \kappa$ with size κ so that for each k, f is constant on $[A]^{k}$ (Erd os-Hajnal 1962, [18]).
- κ is Rowbottom if whenever $\lambda<\kappa$ and $f:[\kappa]^{<\omega} \rightarrow \lambda$, there is an $A \subseteq \kappa$ with size κ so that when f is restricted to $[A]^{<\omega}$, it's range is countable (Rowbottom 1964, [19]).
- κ is Jónsson if whenever $f:[\kappa]^{<\omega} \rightarrow \kappa$, there is an $A \subseteq \kappa$ with size κ so that when f is restricted to $[A]^{<\omega}$, it's range is not all of κ (Jónsson 1972, [10]).

Infinite Coloring Properties

Why only allow the size of the set and the number of colors to be infinite? Suppose $f:\left[\aleph_{0}\right]^{\omega} \rightarrow 2$. Must there be an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{\omega}$?

Infinite Coloring Properties

Why only allow the size of the set and the number of colors to be infinite? Suppose $f:\left[\aleph_{0}\right]^{\omega} \rightarrow 2$. Must there be an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{\omega}$?

No! Using the axiom of choice, we can enumerate the infinite subsets of \aleph_{0} and then create a function which diagonalizes against them. In fact, this proof technique works for a general infinite cardinal.

Infinite Coloring Properties

Why only allow the size of the set and the number of colors to be infinite? Suppose $f:\left[\aleph_{0}\right]^{\omega} \rightarrow 2$. Must there be an infinite $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{\omega}$?

No! Using the axiom of choice, we can enumerate the infinite subsets of \aleph_{0} and then create a function which diagonalizes against them. In fact, this proof technique works for a general infinite cardinal.

However, there is a natural topology to put on the $\left[\aleph_{0}\right]^{\omega}$, and if f corresponds to a Borel set in this topology, then the answer is yes (Galvin-Prikry 1973, [5]). The coloring constructed from the axiom of choice is pathological in much the same way as the Vitali set.

Another Fork in the Road

- Subdirection 1: Embrace the axiom of choice and explore the finite coloring properties under the axiom of choice.
- Subdirection 2: Consider only definable colorings and see what happens when obvious pathologies are avoided.

Extending the Borel Sets

- The Borel sets are those subsets of \mathbb{R} generated by the open sets under countable set operations. But to capture the notion of definability, we have to look at more than just that.

Extending the Borel Sets

- The Borel sets are those subsets of \mathbb{R} generated by the open sets under countable set operations. But to capture the notion of definability, we have to look at more than just that.
- Solovay, in 1970 studied an object called $L(\mathbb{R})$ [22]. This is the smallest structure containing \mathbb{R} and closed under all definable operations.
- Unlike the Borel sets, $L(\mathbb{R})$ captures more than just subsets of \mathbb{R}, it also captures collections of subsets of \mathbb{R}, families of collections of subsets of \mathbb{R}, etc...

Extending the Borel Sets

- The Borel sets are those subsets of \mathbb{R} generated by the open sets under countable set operations. But to capture the notion of definability, we have to look at more than just that.
- Solovay, in 1970 studied an object called $L(\mathbb{R})$ [22]. This is the smallest structure containing \mathbb{R} and closed under all definable operations.
- Unlike the Borel sets, $L(\mathbb{R})$ captures more than just subsets of \mathbb{R}, it also captures collections of subsets of \mathbb{R}, families of collections of subsets of \mathbb{R}, etc... .
- The properties of Borel sets lift to sets of reals in $L(\mathbb{R})$: they are Lebesgue measurable, have the Baire property, are either countable or in bijection with \mathbb{R}, and so on. In fact, a stronger principle which implies all of these is true for $L(\mathbb{R})$.

Games

Let $A \subseteq \mathbb{R}$. The game \mathcal{G}_{A} is played as follows:

- there are two players, I and II,
- they alternate playing natural numbers,
- this forms an infinite string $\left\langle n_{0}, n_{1}, \cdots\right\rangle$, which in turn defines a real $x \in \mathbb{R}$,
- I wins this play of the game if $x \in A$ and II wins if $x \notin A$.

Games

Let $A \subseteq \mathbb{R}$. The game \mathcal{G}_{A} is played as follows:

- there are two players, I and II,
- they alternate playing natural numbers,
- this forms an infinite string $\left\langle n_{0}, n_{1}, \cdots\right\rangle$, which in turn defines a real $x \in \mathbb{R}$,
- I wins this play of the game if $x \in A$ and II wins if $x \notin A$.

I	n_{0}		n_{2}		\cdots	
II		n_{1}		n_{3}		\cdots

Strategies

A strategy is a function which decides what moves a player should make.

Strategies

A strategy is a function which decides what moves a player should make.

- For player I, this is a function

$$
\sigma:\left\{\left\langle n_{0}, n_{1}, \cdots, n_{2 k-1}, n_{2 k}\right\rangle: k \in \mathbb{N} \text { and } n_{0}, \cdots, n_{2 k} \in \mathbb{N}\right\} \rightarrow \mathbb{N}
$$

Strategies

A strategy is a function which decides what moves a player should make.

- For player I, this is a function

$$
\begin{aligned}
& \sigma:\left\{\left\langle n_{0}, n_{1}, \cdots, n_{2 k-1}, n_{2 k}\right\rangle: k \in \mathbb{N} \text { and } n_{0}, \cdots, n_{2 k} \in \mathbb{N}\right\} \rightarrow \mathbb{N} \\
& \text { If } y=\left\langle n_{1}, n_{3}, \cdots\right\rangle \text { is II's play in the game, then } \\
& \qquad \sigma * y=\left\langle\sigma(\emptyset), n_{1}, \sigma\left(\left\langle\sigma(\emptyset), n_{1}\right\rangle\right), \cdots\right\rangle
\end{aligned}
$$

Strategies

A strategy is a function which decides what moves a player should make.

- For player I, this is a function

$$
\begin{aligned}
& \sigma:\left\{\left\langle n_{0}, n_{1}, \cdots, n_{2 k-1}, n_{2 k}\right\rangle: k \in \mathbb{N} \text { and } n_{0}, \cdots, n_{2 k} \in \mathbb{N}\right\} \rightarrow \mathbb{N} \\
& \text { If } y=\left\langle n_{1}, n_{3}, \cdots\right\rangle \text { is II's play in the game, then } \\
& \qquad \sigma * y=\left\langle\sigma(\emptyset), n_{1}, \sigma\left(\left\langle\sigma(\emptyset), n_{1}\right\rangle\right), \cdots\right\rangle
\end{aligned}
$$

- The situation for player II is similar.

Winning Strategies

A strategy σ for player I is winning for \mathcal{G}_{A} if $\sigma * y \in A$ for every y. A strategy for player II is winning for \mathcal{G}_{A} if $\tau * y \notin A$ for every A. We say A is determined if there is a winning strategy for \mathcal{G}_{A}.

Winning Strategies

A strategy σ for player I is winning for \mathcal{G}_{A} if $\sigma * y \in A$ for every y. A strategy for player II is winning for \mathcal{G}_{A} if $\tau * y \notin A$ for every A. We say A is determined if there is a winning strategy for \mathcal{G}_{A}.

Note:

- If A decides who wins the game after only finitely many moves, then A is determined.
- Only one player can have a winning strategy.
- If A is Borel set, then A is determined (Gale-Stewart 1953, [4]) (D. Martin 1975, [16]).
- Under the axiom of choice, there is a set A which is not determined.

The Axiom of Determinacy

The axiom of determinacy (AD) is the assertion that every $A \subseteq \mathbb{R}$ is determined.

The Axiom of Determinacy

The axiom of determinacy (AD) is the assertion that every $A \subseteq \mathbb{R}$ is determined.

- AD implies that all sets of reals are Lebesgue measurable, have the Baire property, are either countable or in bijection with \mathbb{R}, and so on.
- AD contradicts the axiom of choice. In fact, AD implies that there is no well-order on \mathbb{R}.
- AD is true for $L(\mathbb{R})$ (Woodin, 1980s). Builds on work of Martin and Steel. For a reference see [13]

Size Without the Axiom of Choice

Without the axiom of choice, the best way to measure size is through injections. The cardinals are no longer a comprehensive list of all possible sizes. Note that 2^{ω} is in bijection with \mathbb{R}.

Finite Coloring Properties Under AD

In settings without the axiom of choice, Θ is used to denote the least cardinal which \mathbb{R} does not surject onto. Under $A D, \Theta$ is quite large. $\ln L(\mathbb{R})$,

- if $\omega<\kappa<\Theta$ is regular, then κ is Ramsey (Steel 1995, [23]),
- if $\omega<\kappa<\Theta$ is regular or is the countable union of sets of smaller cardinality, then κ is Rowbottom, and
- if $\omega<\kappa<\Theta$, then κ is Jónsson (Jackson-Ketchersid-Schlutzenberg-Woodin 2014, [9]).

In fact, this is an exact characterization.

Infinite Coloring Properties Under AD

Building on the work of Mathias from 1976 [17], Shelah and Woodin showed the following in 2002 [20].

Theorem
Suppose $f:\left[\aleph_{0}\right]^{\omega} \rightarrow 2$ is in $L(\mathbb{R})$. Then there is an $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{\omega}$.

Infinite Coloring Properties Under AD

Building on the work of Mathias from 1976 [17], Shelah and Woodin showed the following in 2002 [20].
Theorem
Suppose $f:\left[\aleph_{0}\right]^{\omega} \rightarrow 2$ is in $L(\mathbb{R})$. Then there is an $A \subseteq \aleph_{0}$ so that f is constant on $[A]^{\omega}$.

Definition

Say κ has the weak partition property if whenever $f:[\kappa]^{<\kappa} \rightarrow 2$, there is an $A \subseteq \kappa$ so that $|A|=\kappa$ and f is constant on A.
κ has the strong partition property if whenever $f:[\kappa]^{\kappa} \rightarrow 2$, there is an $A \subseteq \kappa$ so that $|A|=\kappa$ and f is constant on A.

The Weak and Strong Partition Properties

Theorem (Martin, 1968 [15])
In $L(\mathbb{R}), \aleph_{1}$ has the strong partition property.

The Weak and Strong Partition Properties

Theorem (Martin, 1968 [15])

$\operatorname{In} L(\mathbb{R}), \aleph_{1}$ has the strong partition property.
Theorem (Kechris-Kleinberg-Moschovakis-Woodin 1981 [11], Kechris-Woodin 1982 [12])
$A D$ implies that there are unboundedly many $\kappa<\Theta$ with the strong and weak partition properties. In fact the existence of unboundedly many $\kappa<\Theta$ with the weak partition property is equivalent to $A D$.

The Weak and Strong Partition Properties

Theorem (Martin, 1968 [15])
 $\operatorname{In} L(\mathbb{R}), \aleph_{1}$ has the strong partition property.

Theorem (Kechris-Kleinberg-Moschovakis-Woodin 1981 [11], Kechris-Woodin 1982 [12])
$A D$ implies that there are unboundedly many $\kappa<\Theta$ with the strong and weak partition properties. In fact the existence of unboundedly many $\kappa<\Theta$ with the weak partition property is equivalent to $A D$.

With his work on descriptions, Steve Jackson has worked to characterize which cardinals have the weak and strong partition properties in $L(\mathbb{R})$.

Combinatorics on Other Sets

\mathbb{R} is the start point for sets which cannot be well-ordered. There are two directions to go from there:

- Stay with linear orders and look at $2^{\omega_{1}}, 2^{\omega_{2}}$, etc...
- Go into the cloud and look at quotients of \mathbb{R}.

The second direction has the most theoretical support, in the form of descriptive set theory.

Invariant Descriptive Set Theory

The cloud past \mathbb{R} is populated with quotients of \mathbb{R}. If E and F are Borel equivalence relations on \mathbb{R}, we say $E \leq_{B} F$ iff there is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $x E y \Longleftrightarrow f(x) F f(y)$. This corresponds to \mathbb{R} / E embedding into \mathbb{R} / F in a definable way.

Invariant Descriptive Set Theory

The cloud past \mathbb{R} is populated with quotients of \mathbb{R}. If E and F are Borel equivalence relations on \mathbb{R}, we say $E \leq_{B} F$ iff there is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $x E y \Longleftrightarrow f(x) F f(y)$. This corresponds to \mathbb{R} / E embedding into \mathbb{R} / F in a definable way.
Theorem (Silver 1980, [21])
Suppose that E is a Borel equivalence relation on \mathbb{R}. Then either \mathbb{R} / E is countable or $i d_{\mathbb{R}} \leq_{B} E$.

Invariant Descriptive Set Theory

The cloud past \mathbb{R} is populated with quotients of \mathbb{R}. If E and F are Borel equivalence relations on \mathbb{R}, we say $E \leq_{B} F$ iff there is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $x E y \Longleftrightarrow f(x) F f(y)$. This corresponds to \mathbb{R} / E embedding into \mathbb{R} / F in a definable way.

Theorem (Silver 1980, [21])
Suppose that E is a Borel equivalence relation on \mathbb{R}. Then either \mathbb{R} / E is countable or $i d_{\mathbb{R}} \leq_{B} E$.

Definition
Define E_{0} by $x E_{0} y$ iff $|x-y| \in \mathbb{Q}$. Note that $E_{0} \not Z_{B}$ id $_{\mathbb{R}}$.

Invariant Descriptive Set Theory

The cloud past \mathbb{R} is populated with quotients of \mathbb{R}. If E and F are Borel equivalence relations on \mathbb{R}, we say $E \leq_{B} F$ iff there is a map $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $x E y \Longleftrightarrow f(x) F f(y)$. This corresponds to \mathbb{R} / E embedding into \mathbb{R} / F in a definable way.

Theorem (Silver 1980, [21])
Suppose that E is a Borel equivalence relation on \mathbb{R}. Then either \mathbb{R} / E is countable or $i d_{\mathbb{R}} \leq_{B} E$.

Definition
Define E_{0} by $x E_{0} y$ iff $|x-y| \in \mathbb{Q}$. Note that $E_{0} \not Z_{B}$ id $_{\mathbb{R}}$.
Theorem (Harrington-Kechris-Louveau 1990, [6])
Suppose E is a Borel equivalence relation on \mathbb{R} and $i d_{\mathbb{R}} \leq_{B} E$.
Then either $E \leq_{B}$ id $\mathbb{R}_{\mathbb{R}}$ or $E_{0} \leq_{B} E$.

Dichotomies Under AD

These dichotomies extend under AD. So, in $L(\mathbb{R})$, if \aleph_{1} does not embed into \mathbb{R} / E, then precisely one of the following is true:

- \mathbb{R} / E is countable,
- \mathbb{R} / E is in bijection with \mathbb{R}, or
- \mathbb{R} / E_{0} embeds into \mathbb{R} / E.

Shelah and Harrington proved the first part of this trichotomy for some non-Borel sets in 1980 [7]. Woodin extended this work to all of $L(\mathbb{R})$ in the 90 s , and Hjorth proved the last two parts of this trichotomy in 1995 [8]. Caicedo and Ketchersid have recent work extending this to all sets in $L(\mathbb{R})$ [2].

Coloring Properties for Other Sets

When X is just some set, we define $[X]^{<\omega}$ to be the finite subsets of X.

- X is Ramsey if whenever $f:[X]^{<\omega} \rightarrow 2$, there is an $A \subseteq X$ in bijection with X so that for each k, f is constant on $[A]^{k}$.
- X is Jónsson if whenever $f:[X]^{<\omega} \rightarrow X$, there is an $A \subseteq \kappa$ in bijection with X so that when f is restricted to $[A]^{<\omega}$, it's range is not all of X.

Coloring Properties for Other Sets

When X is just some set, we define $[X]^{<\omega}$ to be the finite subsets of X.

- X is Ramsey if whenever $f:[X]^{<\omega} \rightarrow 2$, there is an $A \subseteq X$ in bijection with X so that for each k, f is constant on $[A]^{k}$.
- X is Jónsson if whenever $f:[X]^{<\omega} \rightarrow X$, there is an $A \subseteq \kappa$ in bijection with X so that when f is restricted to $[A]^{<\omega}$, it's range is not all of X.

Theorem (H.-Jackson)
In $L(\mathbb{R}), \mathbb{R}$ is Jónsson and \mathbb{R} / E_{0} is Ramsey.

Coloring Properties for Other Sets

When X is just some set, we define $[X]^{<\omega}$ to be the finite subsets of X.

- X is Ramsey if whenever $f:[X]^{<\omega} \rightarrow 2$, there is an $A \subseteq X$ in bijection with X so that for each k, f is constant on $[A]^{k}$.
- X is Jónsson if whenever $f:[X]^{<\omega} \rightarrow X$, there is an $A \subseteq \kappa$ in bijection with X so that when f is restricted to $[A]^{<\omega}$, it's range is not all of X.

Theorem (H.-Jackson)
In $L(\mathbb{R}), \mathbb{R}$ is Jónsson and \mathbb{R} / E_{0} is Ramsey.
Work from Blass in 1981 [1], Voigt in 1985 [24], and Lefmann in 1987 [14] show that while \mathbb{R} is not Ramsey, there are canonization theorems for \mathbb{R}.

Coloring Properties for Pairs of Sets

Definition

Let X and Y be sets. Then

- (X, Y) is Ramsey if whenever $f:[X]^{<\omega} \rightarrow Y$, there is an $A \subseteq X$ in bijection with X so that for each k, f is constant on $[A]^{k}$, and
- (X, Y) is Jónsson if whenever $f:[X]^{<\omega} \rightarrow Y$, there is an $A \subseteq X$ in bijection with X so that when f is restricted to $[A]^{<\omega}$, it's range is not all of Y.

Results for Pairs

Theorem (Jackson-Ketchersid-Schlutzenberg-Woodin, 2014)
Suppose $\omega<\lambda, \kappa<\Theta$ are cardinals. Then in $L(\mathbb{R}),(\kappa, \lambda)$ is Jónsson.

Theorem (H.-Jackson)
Let X be the set of cardinals between ω and Θ, along with \mathbb{R} and \mathbb{R} / E_{0}. Let \mathcal{X} be the closure of X under \cup and \times. Then (A, B) is Jónsson in $L(\mathbb{R})$ for all $A, B \in \mathcal{X}$.

Theorem (H.-Jackson)
$\left(\mathbb{R} / E_{0}, \mathbb{R}\right)$ is Ramsey in $L(\mathbb{R})$ and $\left(\mathbb{R} / E_{0}, \kappa\right)$ is Ramsey in $L(\mathbb{R})$ for all cardinals κ.

Thanks For Listening!

References I

[1] A. Blass.
A partition theorem for perfect sets.
Proceedings of the American Mathematical Society, 2, 1981.
[2] A. Caicedo and R.Ketchersid.
A trichotomy theorem in natural models of ad+. Contemporary Mathematics, 533, 2011.
[3] P. Erdös and A. Hajnal.
Some remarks concerning our paper on the structure of set-mappings 'non-existence of a two-valued σ-measure for the first uncountable inaccessible cardinal'.
Acta Mathematica Academiae Scientiarum Hungaricae, 13, 1962.

References II

[4] D. Gale and F. Stewart.
Infinite games with perfect information.
Annals of Mathematical Studies, 28, 1953.
[5] F. Galvin and K. Prikry.
Borel sets and ramsey's theorem. Hournal of Symbolic Logic, 38, 1973.
[6] L. Harrington, A. Kechris, and A. Louveau.
A glimm-effros dichotomy for borel equivalence relations.
Journal of the American Mathematical Society, 3, 1990.

References III

[7] L. Harrington and S. Shelah.
Counting equivalence classes for co- κ-suslin equivalence relations.
Logic Colloquium, 108, 1980.
[8] G. Hjorth.
A dichotomy for the definable universe.
The Association of Symbolic Logic, 60, 1995.
[9] S. Jackson, R. Ketchersid, F. Schlutzenberg, and W. Woodin.
Ad and Jónsson cardinals in $L(\mathbb{R})$. Journal of Symbolic Logic, 79, 2014.

References IV

[10] B. Jónsson.
Topics in Universal Algebra.
Spriner-Verlag, 1972.
[11] A. Kechris, E. Kleinberg, Y. Moschovakis, and W. Woodin. The axiom of determinacy, strong partition properties and nonsingular measures.
In A. Kechris, B. Löwe, and J. Steel, editors, The Cabal Seminar, Volume 1, pages 333-354. Cambridge University Press, 2008.

References V

[12] A. Kechris and W. Woodin.
The equivalence of partition properties and determinacy. In A. Kechris, B. Löwe, and J. Steel, editors, The Cabal
Seminar, Volume 1, pages 355-378. Cambridge University
Press, 2008.
[13] P. Larson.
The Stationary Tower, volume 32.
University Lecture Series, 2004.
[14] H. Lefmann.
Canonical partition behavior of cantor spaces.
Algorithms and Combinatorics, 8, 1987.

References VI

[15] D. Martin.
The axiom of determinateness and reduction principles in the analytic hierarchy.
Bulletin of the American Mathematical Society, 74, 1968.
[16] D. Martin.
Borel determinacy.
Annals of Mathematics, 102, 1975.
[17] A. Mathias.
Happy families.
Annals of Mathematical Logic, 12, 1976.

References VII

[18] F. Ramsey.
On a problem of formal logic.
Proceedings of the London Mathematical Society, 30, 1930.
[19] F. Rowbottom.
Some strong axioms of infinity incompatible with the axiom of constructibility.
Annals of Pure and Applied Logic, 3, 1971.
[20] S. Shelah and W. Woodin.
Large cardinals imply that every reasonably definable set of reals is lebesgue measurable.
Association for Symbolic Logic, 8, 2002.

References VIII

[21] J. Silver.
Counting the number of equivalence classes of borel and coanalytic equivalence relations.
Annals of Mathematical Logic, 18, 1980.
[22] R. Solovay.
A model of set-theory in which every set of reals is lebesgue measurable.
Annals of Mathematics, 92, 1970.
[23] J. Steel.
Hodisupil(r)i/supi is a core model below θ.
The Bulletin of Symbolic Logic, 1, 1995.

References IX

[24] B. Voigt.
Canonizing partition theorems.
Journal of Combinatorial Theory, 40, 1985.

